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ABSTRACT

E is an extension of C++ designed for writing software systems to support per-
sistent applications. Originally designed as a language for implementing data-
base systems, E has evolved into a general persistent programming language. E
was the first C++ extension to support transparent persistence, the first C++
implementation to support generic classes, and remains the only C++ extension
to provide general-purpose iterators. In addition to its contributions to the C++
programming domain, work on E has made several contributions to the field of
persistent languages in general, including several distinct implementations of
persistence. This paper describes the main features of E and shows through
examples how E addresses many of the problems that arise in building persistent
systems.
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1. MOTIVATION

In the mid-1980’s, several database research groups, responding to the needs of a variety of emerging applica-

tions, began to explore "extensible database systems" [Bato88, Care85, Care90, Daya86, Rowe87, Schw86].

Although different groups have different notions of what "extensible" means, a common desire is to support a high

degree of flexibility for customizing the database system to the user’s application. Such flexibility is mostly lacking

in today’s commercial systems, and attempts to provide it through added software layers experienced severe perfor-

mance penalties [Care85]. These experiences prompted researchers to explore system architectures which could be

extended easily and without loss of performance. For example, in an extensible DBMS, it should be easy to aug-

ment the collection of "base" types with new user-defined types.1

The EXODUS project at the University of Wisconsin has been exploring a toolkit approach to extensibility.

The software tools simplify the construction of customized database systems as well as the extension of these sys-

tems once they have been built. The first component of the EXODUS toolkit is the EXODUS Storage Manager

[Care89]. It provides basic support for objects, files, and transactions. Next is the E programming language and its

compiler. This paper describes the E language design; various approaches to the implementation of E are described

in [Rich89b, Rich90, Schu90, Shek90]. The third major EXODUS component is the Optimizer Generator [Grae87],

which allows a database implementor (DBI) to produce a customized query optimizer from a set of rules describing

a given query algebra.

E was originally intended as the language in which to write database system code; that is, abstract data types

(e.g., time), access methods (e.g., grid files), and operator methods (e.g., hash join) were all to be written in E. E

was also intended as a target language for schema and query compilation, with user-defined schemas being

translated into E types and user queries into E procedures [Care86b, Rich87].

The difficulty in building a DBMS in a conventional systems programming language (e.g., C) derives from

several factors. First, the DBI must write code whose primary task is to manipulate shared data on secondary

storage. A significant portion of the total system code is therefore devoted to interacting with the storage layer, e.g.,

calling the buffer manager to read a record. Second, the DBI must write code for operators and access methods

without knowing a priori the data types on which they might operate. For example, the DBI cannot know that some

user will eventually want to build an index, keyed on area, over a set of polygons. Finally, the DBI must build a

query processor that converts queries posed by end users into a form that the system can execute. This translation is

greatly simplified if the basic operators can be written in a composable manner.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1Commercial Ingres now supports user-defined abstract data types along the lines pioneered by ADT-INGRES [Ston86]
and POSTGRES [Rowe87].
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These and other influences led to the design of the E language. While the original goals are still clearly evi-

dent, E has evolved into a general purpose language for coding persistent applications. E is an extension of C++

[Stro86, Elli90] providing generator classes, iterators, and persistent objects. C++ provided a good starting point

with its class-based data abstraction features and its expanding popularity as a systems programming language.

Parameterized types in the form of generator (or generic) classes were added for their utility both in defining data-

base container types, such as sets and indices, as well as in expressing generic operators, such as select and join.

Iterators were added as a useful programming construct in general, and as a mechanism for structuring database

queries in particular. Both generators and iterators were inspired by CLU [Lisk77]. Persistence — the ability of a

language object to survive from one program run to the next — was added because it is an essential attribute of

database objects. In addition, by describing the database or object base in terms of persistent variables, one may

then manipulate it directly using expressions within the E language.

Two factors influenced the way in which E’s extensions were added to C++. The first was the desire to main-

tain upward compatibility, that is, that E should be a strict superset of C++. Originally, we were forced to make a

small compromise in order to support generator classes: in E, nested class definitions follow nested scope rules,

while nested class definitions were exported to the global scope in versions 1.2 and 2.0 of C++ [Stro86]. Now that

C++ also supports nesting of class scopes [Elli90], this is no longer a problem. The second important factor con-

cerned efficiency. We desired that the C++ subset of E be compilable into code no less efficient than that produced

by a C++ compiler. This primarily influenced the way in which we added persistence to the language: instead of

allowing persistence to be a property of any object, we allow persistence only for objects whose type is declared to

be a database (db) type. Section 5 explains this point more fully.

The design and implementation of E represent several contributions to the field of persistent programming

languages. E and Avalon/C++ [Herl87, Detl88], designed at approximately the same time, were the first to extend

C++ with persistence. In Avalon/C++, persistence is based on inheritance from the class recoverable, and access

to persistent objects must be within the context of a special pinning block. Persistence in E is based on the per-

sistent storage class, and the I/O required to access a persistent object is transparent. The storage class approach

has since appeared in at least two more recent language designs, Persistent Modula-3 [Hosk90] and ObjectStore

[Lamb91]. E was also the first extension to add generic classes to C++; its design and implementation predated the

C++ template design [Stro88]. In addition, E remains the only C++ extension to provide a general-purpose iterator

construct.

This remainder of this paper is organized as follows: Section 2 reviews the basics of C++ classes, introducing

a simple binary tree example. The following sections then present the three main language extensions that E adds to

C++. These sections also compare E’s features to similar features found in other languages. Section 3 discusses

iterators and uses them to help extend the binary tree to support duplicate keys. Section 4 describes generators and
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redefines the example as a generic binary tree. Section 5 describes database types and persistence and modifies the

example to make the tree a part of a database. Following the presentation of the E language design in Sections 3-5,

Section 6 discusses several shortcomings of the current design and/or implementation of E. Since E was first

designed and implemented, other persistent extensions of C++ have appeared; several of these are discussed briefly

in Section 7. Section 8 concludes the presentation by summarizing the current status of the language. An Appendix

is included at the end of the paper to indicate how the parts database application described in [AtkM87] can be

expressed in E. Finally, it should be noted that all of the examples in this paper have been compiled and run.

2. C++ REVIEW

The original design of E was an extension of C++ v.1.2 [Stro86], which extended C [Kern78] with classes,

operator overloading, type-checked function calls, and several other features. C++ v.2.0 has added multiple inheri-

tance, and E has recently been ported to this version. In order to avoid unnecessary complication, our review of

C++ and our examples will include only the data abstraction features, which were present in version 1.2. Where

necessary, we will highlight the interaction of C++ inheritance (especially, multiple inheritance) with features added

by E, e.g., see Section 5.3.3.

2.1. Classes

A central concept in C++ is the notion of a class. A class defines a type, and its definition includes both the

representation of any instance of the class as well as the operations that may be performed on an instance. Unlike

the abstraction mechanisms provided in CLU [Lisk77] or Smalltalk [Gold83], a C++ class does not necessarily hide

the representation of instances. It is up to the designer of a class to declare explicitly which members (data and

function) are private and which are public. The data abstraction capabilities that C++ classes provide were one of

the main motivations for our selection of C++ as a starting point for the design of E.

In C++ parlance, representation objects are called data members, and class operations are called member

functions (or methods). Member functions are always applied to a specific instance; within the function, any

unqualified reference to a data member of the class is bound to that instance. The binding is realized through an

implicit parameter, this, which is a pointer to the object on which the method was invoked. Within a member func-

tion, an unqualified reference to a member x of the class is equivalent to this→x.

2.2. Inheritance

Another reason that we chose C++ as a starting point for E is that it supports subtyping. Given a class A, we

may define a class B that is a subtype of A as follows:
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class A { ... };
class B : public A { ... };

A is called the base class, and B, the derived class. B inherits both the representation of A as well as A’s member

functions. The public keyword in this context specifies that public members of A are also public members of B;

without this keyword, public members of A would become private members of B. B may declare additional data

members and member functions, and it may reimplement the member functions defined in A.

One of the key contributions of object-oriented programming languages is the late binding of method calls.

That is, suppose a method f in type A is reimplemented in B, and suppose a program contains an invocation of f

through an object pointer x whose (static) type is A. At runtime, x may actually refer to an instance of type B. Late

binding defers the binding of code for f until runtime. At that point, the actual type (A or B) of the object is deter-

mined, and the appropriate implementation of f is called. Late binding allows a type hierarchy to be extended with

new subtypes without requiring changes to (or even recompilation of) existing code. In C++, late binding is

achieved by declaring member functions to be virtual.

Although we do not show specific examples in this paper, E extends C++ subtyping mechanisms, including

both single- and multiple-inheritance, to the realm of database types and persistent objects. This task has presented

several challenges, both in defining the semantics of types and type persistence and in adapting the implementation.

Not all of these problems have been completely solved; we discuss the issues further in Section 6.

2.3. An Example

The example in Figures 1a and 1b is a complete C++ definition for a very simple binary tree index. The basic

operation of the tree is to map a key value to the address of an entity having that key. In this example, each tree

node stores a floating point key and a pointer to the indexed entity along with pointers to its left and right subtrees.

The implementation uses a pair of classes: one which defines the nodes in the tree and one which defines the tree

itself. The node class is recursive, both in its representation (i.e., nodes point to nodes) and in its operations (i.e.,

search and insert are recursive methods). The tree class is a simple "wrapper" that encapsulates the nodes. In order

to keep the example simple while still showing the major features, the tree is unbalanced, and we limit the opera-

tions on the tree to inserting and searching.

Figure 1a gives the definition of the class binaryTreeNode. The representation of each node in the tree fol-

lows the class heading. Each node contains a floating point key value (nodeKey), a pointer2 to the indexed entity

(entPtr), and pointers to the left and right subtrees (leftChild and rightChild).
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2In C++, a void* may legally point to any type of object.
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class binaryTreeNode {
float nodeKey;
void *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

public:
binaryTreeNode( float, void * ); /* constructor */
void * search( float );
void insert( binaryTreeNode* );

};

binaryTreeNode::binaryTreeNode( float insertKey, void * insertPtr ) {
nodeKey = insertKey;
entPtr = insertPtr;
leftChild = rightChild = NULL;

}

void * binaryTreeNode::search( float searchKey ) {
if( searchKey == nodeKey )

return entPtr;
else if( searchKey < nodeKey )

if( leftChild == NULL )
return NULL;

else
return leftChild→search( searchKey );

else
if( rightChild == NULL )

return NULL;
else

return rightChild→search( searchKey );
}

void binaryTreeNode::insert( binaryTreeNode* newNode )
if( newNode→nodeKey == this→nodeKey ){

return; /* no duplicates allowed */
else if( newNode→nodeKey < this→nodeKey )

if( leftChild == NULL )
leftChild = newNode;

else
leftChild→insert( newNode );

else
if( rightChild == NULL )

rightChild = newNode;
else

rightChild→insert( newNode );
}

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1a: Class Definition for Binary Tree Nodes

The keyword public introduces a set of member declarations that form the public interface to the class. The

interface to binaryTreeNode comprises the methods search and insert, as well as one named binaryTreeNode.
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These member functions are elaborated following the class declaration. The function binaryTreeNode is a con-

structor for its class. Constructors initialize class instances; the binaryTreeNode constructor initializes all the

fields of a newly created node. C++ guarantees that if a class has a constructor, then that constructor will be

invoked automatically whenever an instance of the class is created. If the constructor takes arguments, they must be

supplied with the object’s declaration. For example, in the declaration

binaryTreeNode aNode( 0.0, NULL );

aNode is a binaryTreeNode instance initialized with a zero key and a null pointer. The member function search

compares the node’s key with the argument, searchKey, and either returns the node’s entity pointer or recursively

searches the appropriate subtree. If that subtree does not exist, the key is not to be found, and the null pointer is

returned. The insert member function takes a pointer to a new node which is to be inserted into the tree. We

assume that this node has been initialized with its key and pointer values. The routine searches for the proper posi-

tion and adds the node as a new leaf. Note that duplicate keys are simply rejected; the next section will remedy this

shortcoming.

Figure 1b gives the definition of the binaryTree class. As we said earlier, this class is really a thin wrapper

around the node class, and it is mainly used to start the recursion, e.g., in a search. The representation of a

binaryTree is a pointer to the root node. The binaryTree constructor initializes this pointer to NULL. To search

the tree, we first check the root pointer, and if it is not NULL, we search the root node recursively. The insert

member function contains an example of creating a node dynamically. The new operator returns a pointer to a

node which has been allocated on the heap. Again, since we are creating an instance of a class having a constructor,

we have provided arguments. If the tree is empty, the new node immediately becomes the root; otherwise, we pass

the new node to the root, and the insert proceeds recursively.

3. ITERATORS

We now consider the first of two E extensions that were inspired by the CLU language [Lisk77]. Among its

many contributions, CLU demonstrated that separating the production of a sequence of values from the use of those

values is both elegant and highly practical. This control abstraction is called an iterator, as it generalizes the itera-

tion found in for loops. An iterator comprises two cooperating agents, an iterator function (i-function) and an

iterate loop (i-loop), that work together to produce and to process a sequence of values. The i-loop is a client of the

i-function, which it views simply as the source of a stream of values. The i-function produces that stream by yield-

ing each result value one-at-a-time to the client loop. Unlike a return from a normal function, when an i-function

yields a value, its local state is preserved. When the i-loop requests another value, the i-function resumes execution.

Thus, an i-function can be viewed as a limited form of coroutine, one that may be invoked only within the context of

an i-loop.
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class binaryTree
{

binaryTreeNode* root;
public:

binaryTree(); /* constructor */
void * search( float );
void insert( float, void * );

};

binaryTree::binaryTree() {
root = NULL;

}

void * binaryTree::search( float searchKey ) {
if( root == NULL )

return NULL;
else

return root→search( searchKey );
}

void binaryTree::insert( float insertKey, void * insertPtr ) {
binaryTreeNode * newNode = new binaryTreeNode( insertKey, insertPtr );
if( root == NULL )

root = newNode;
else

root→insert( newNode );
}

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1b: Class Definition for Binary Trees

3.1. Iterators in E

We originally included iterators in E for their utility in structuring database query processing, although we

quickly became convinced of their usefulness as a general programming construct. Syntactically, an iterator func-

tion looks like a normal function, except that the keyword iterator precedes the return type, and the function body

may contain yield statements. An i-function may take parameters of any type and may yield values of any type.

The code comprising the i-function body is arbitrary; an i-function may invoke other iterators and may be recursive.

Consider the example in Figure 2. The purpose of the i-function bigElements is to yield the elements of an

unsorted integer array that are greater than the average of all of the elements. When bigElements is invoked, it first

makes one pass through the array in order to compute the average. Then it makes a second pass, yielding each ele-

ment that is larger than the average. At each yield point, bigElements suspends its execution while the client

processes the element; when the client requests the next element, the i-function will resume after the yield point.

When the for loop terminates, and control "falls out" the bottom, the i-function also terminates. (An iterator may
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also terminate by executing a normal return.) Although this example shows only one yield statement, in general,

an i-function may have many.

An iterate loop comprises the keyword iterate, followed by one or more i-function invocations in

parentheses, followed by a statement which forms the loop body. Each invocation supplies actual arguments to the

i-function, and it declares a variable to receive the yielded values. For example, the following i-loop activates the

i-functions f and g, where the yield types are int and foo, respectively:

iterate( int x = f(); foo y = g(); int z = f() ) { ... }

Note that there are two simultaneous activations of f, one associated with x and one with z.

An i-function may be invoked only within the context of an i-loop. Figure 2 also shows a main program con-

taining an i-loop that uses the bigElements iterator. After initializing the array A, control enters the loop, and the

i-function is activated. When control returns to the loop, nextEl holds the first value of the sequence. After the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

iterator int bigElements( int * array, int size ) {
float sum = 0.0;
float ave = 0.0;

if(size > 0) {
/* first compute the average */
for( int i = 0; i < size; i++ )

sum += array[ i ];
ave = sum / size;

}

/* now yield the big elements */
for( int i = 0; i < size; i++ )

if( array[ i ] > ave )
yield array[ i ];

}

main() {
int A[ 10 ];

/* Initialize A */
...

/* Now find big elements. */
iterate( int nextEl = bigElements( A, 10 ) )

printf("%d ", nextEl);
}

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 2: A Simple Iterator Example
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loop body prints that value, control returns to bigElements if it is still active; if bigElements has terminated, then

the loop also terminates, and control flows to the next statement in the program.

3.2. Flow of Control

In the above example, the flow of control through an iterate loop is implicitly defined. That is, at loop entry,

and at the top of the loop in each iteration, the i-function is resumed in order to obtain the next value. The number

of iterations is determined by the i-function; the loop iterates until the i-function decides to terminate. In addition, a

single i-function controls the loop in this simple example. E provides for several variations on this theme, providing

the programmer with more general control flow capabilities.

E allows multiple i-functions to be activated concurrently. In this case, the default flow of control resumes all

i-functions at the top of the loop; the order of resumption is implementation-dependent. The loop terminates when

all i-functions have terminated. If some i-functions have terminated while others are still active, the values of the

loop variables associated with the terminated i-functions are unaffected by the resumption of the remaining active

i-functions. In order to allow the program to determine which i-functions have terminated, E provides a built-in

function, empty, that may be applied to any i-loop variable; empty( v ) returns 1 if the i-function activation associ-

ated with variable v has terminated, and 0 otherwise. We will see an example shortly.

3.2.1. Advance

The default flow of control described above is too restrictive in certain cases. Consider an iterator that is sup-

posed to yield a sorted stream of values by merging two sorted input streams. Naturally, we wish to produce the

input streams using iterators, so the merge i-function is also a client of other i-functions. The default flow of control

is inappropriate for this task. If we simply try

iterate( int val1 = stream1(); int val2 = stream2() ){ ... }

then we will march down the streams in lock-step, and the loop body may have to buffer an arbitrary number of

values (up to the entire sequence produced by one of the streams). If we try nesting, i.e.,

iterate( int val1 = stream1() )
iterate( int val2 = stream2() ) { ... }

then we will repeat the entire inner i-loop for each element considered by the outer. Clearly, more flexible control is

needed.

The advance statement was introduced in part to meet this need. As an example, consider

advance val2;

where this statement appears within the context of either of the two iterate loops above. The effect of the state-

ment is to resume the i-function activation associated with val2, in this case, stream2(); after the advance state-

ment, val2 has its new value. In its general form, advance may have a comma-separated list of variables; the i-
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function activation associated with each of the variables is resumed (in an implementation-dependent order). If any

advance statement is executed on a given pass through the body of an i-loop, then no default resumptions are car-

ried out, i.e., if any i-functions are advanced, then those are the only i-functions advanced for that iteration.

Figure 3 shows how the advance statement and the empty function may be used to implement the merge

example. When control enters the i-loop, two i-functions, stream1 and stream2, are activated, and the loop vari-

ables, val1 and val2, receive their initial values. We first test to see if either i-function has terminated, and if so, we

simply yield the element from the other stream. The default flow of control will then advance the one active i-

function until it is exhausted. If both i-functions are active, then we yield the smaller value and explicitly advance

the i-function from which it came; the other i-function will not advance on that iteration. The loop terminates when

both i-functions have terminated.

3.2.2. Break

The merge example shows how the client loop can decide which i-function activation to resume on any given

iteration. So far, though, loop termination has still been determined by the i-functions, i.e., the client iterates until

all i-functions have terminated. Alternatively, a client may decide to break out of an i-loop; normally, this causes

immediate termination of all active i-functions associated with that loop.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

iterator int merge() {
iterate( int val1 = stream1();

int val2 = stream2() )
{

if( empty(val1) )
yield val2;

else if( empty(val2) )
yield val1;

else if( val1 < val2 ){
yield val1;
advance val1;

} else {
yield val2;
advance val2;

}
}

}
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3: Using the advance Statement
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A given i-function may sometimes require explicit control over the termination sequence, however. It may,

for example, need to release heap space or to perform other bookkeeping tasks. To handle such cases, we have

extended the yield syntax with an optional clause. This clause is a statement which is executed only if the client ter-

minates the i-loop while the i-function is suspended at that yield point. For example, suppose that an i-function has

built some structure which it must deallocate before terminating, and suppose the variable p points to the root of the

structure. Then in the following example, if the client breaks after the i-function has yielded x, the (user-defined)

cleanUp routine will be called before the i-function terminates:

yield x : cleanUp(p);

In the absence of this clause, no further i-function code is executed before termination.

3.3. A Recursive Iterator Example

As a final example, Figure 4 modifies the binary tree implementation from the previous section so that it han-

dles duplicate keys. For brevity, we show only the search routine. Assume that we have amended the insert routine

so that it no longer rejects a duplicate entry; instead, if it finds a match, it recursively inserts the new entry into the

left subtree. Now, since we must be prepared to find many entries with the same key value, we have rewritten the

tree search in Figure 4 as an iterator which yields a sequence of pointers to all of the entities with matching keys. If

the search key is greater than the key in the current node, we simply yield the results of searching the right subtree.

If the search key is less than or equal to the current node’s key, then we search the left subtree, again yielding each

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 iterator void * binaryTreeNode::search( float searchKey )
2 {
3 if( searchKey <= nodeKey )
4 {
5 if( leftChild != NULL )
6 iterate( void * p = leftChild→search( searchKey ))
7 yield p;
8
9 if( searchKey == nodeKey )
10 yield entPtr;
11 }
12 else if( rightChild != NULL )
13 iterate( void * p = rightChild→search( searchKey ))
14 yield p;
15
16 }

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4: Recursive Search Iterator
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result to the level above. Finally, if the keys are equal, then we yield the entry in the current node after the subtree

search has terminated.

At the top level, the client picks up the return values one-by-one. At any point in the client loop, there is a

stack of active i-functions corresponding to levels of the tree. This situation is illustrated in Figure 5. On the right

is a sample tree built by inserting the keys, 5, 3, 8, 5, 2, 5 (in that order). Assume that the client has asked to search

the tree for all entries with the key value 5. To the left of the tree, we show the stack of recursive iterator activations

at a point immediately before execution of the first yield. (The arrow next to the stack indicates the direction of

growth.) Each activation is labeled with its current line number from the code of Figure 4.

We note that the client may choose to break out of the loop before all duplicate entries have been yielded;

this event triggers a cascading termination of all active i-functions. Although the yield statements in the binary tree

search iterator do not contain termination clauses (since none are needed), any such clauses would be executed as

described above, beginning with the newest activation on the stack.

3.4. Iterators in Other Languages

Iterators have appeared in various forms in many languages. Contemporaneously with CLU, Alphard allowed

the programmer to define generators (i-functions) and provided both a for loop and a first loop for iterating over the

results [Shaw77]. To write a generator in Alphard, the programmer defined an Alphard form (similar to a C++

class) that provided two functions: init and next. The execution of a for (or first) loop would first invoke init and

then repeatedly invoke next. A similar solution is possible (and advocated) in C++, which does not provide any

special support for iterators [Stro86]. That is, one defines a class whose data members maintain the state of the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 5: Operation of Recursive Search Iterator
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iteration and whose member functions include one to initialize the state and one to return a value and advance the

state. While C++ does not define a special construct for invoking iterators, a fairly clean solution is possible using

the standard for loop along with a few simple coding conventions.

The Alphard and C++ approach to writing iterators has two disadvantages relative to languages like CLU and

E. First, for each type of object to be iterated over, one must usually define a separate class (or form) for each kind

of iterative access desired. This is required because the programmer is made responsible for explicitly saving the

state of an iterator between invocations, and the data types involved in the iteration state depend on the type of the

target object of the iteration. Second, coding an iterator that has multiple yield points can significantly complicate

the logic required in the next function3, as the programmer must then explicitly save and resume the control state as

well as the data state of the iterator.

Neither of these problems occur with CLU-like iterators, since preservation of data and control state is part of

their semantics. Such iterators have appeared in several other languages since CLU, e.g., Trellis/Owl [Scha86].

Several database programming languages (DBPLs), which are languages designed to simplify the task of writing

database applications, offer a restricted form of iterator that yields the results of a database query. Examples include

Pascal/R [Schm77], Plain [Wass79], and O++ [Agra89]. These languages allow the programmer to write arbitrary

i-loops, but i-functions can be specified only implicitly via predicates over sets of objects. Rigel [Rowe79], another

DBPL, offers a more general design; it allows both implicit i-functions, for iterating over built-in container types

(such as lists, arrays, and sets), and programmer-provided i-functions.

In comparing E to these languages, recall that E was intended to be a systems programming language, where

control flow must be under explicit programmer control. Moreover, since E was intended to be useful as a target

language for database query compilation, E must provide low-level iteration support sufficient for implementing

queries. Thus, E does not provide the high-level, query-oriented iterators found in many DBPLs. Instead, all i-

functions in E are programmer-defined, as in CLU and Trellis/Owl. On the other hand, E supports parallel invoca-

tion of i-functions, something not found in CLU or Trellis/Owl.4 Rigel and O++ both support a restricted form of

parallel invocation, permitting the individual tuples satisfying the join predicate in a query to be obtained and pro-

cessed. In E, parallel iterators are provided to support general stream-merging computations. E’s advance state-

ment is unique in allowing the explicit resumption of i-functions required for such processing. Finally, both Rigel
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3[Shaw77] mentions the difficulty of writing certain kinds of iterators such as those to compute recurrence relations. As a
simple example, consider generating the Fibonacci numbers. The first two numbers are computed differently from the rest, so the
next function must know whether it is returning the first, second, or n-th (n > 2) number. In E, we would simply write an i-
function having three yield points.

4This flexibility is not without cost, however. The more restricted semantics of CLU iterators allow for an efficient stack-
oriented implementation [AtkR78], while i-function activations in E must be allocated on the heap.
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and E provide a means for i-functions to clean up after the premature termination of an i-loop. Rigel permits just

one cleanup clause for each i-function as a whole, whereas E permits one cleanup clause per yield point.

4. GENERATOR CLASSES

As mentioned in the introduction, one of the problems facing the DBI is that much of the code for a large and

flexible system such as a DBMS must be written without knowledge of the specific types of objects that the code

will eventually manipulate. A traditional DBMS has knowledge of a few basic attribute types "wired in." The basic

operators and access methods can operate on any of these types, essentially by switching on the type of the attribute

at hand. One obvious problem with this approach is that the set of basic types is fixed, and therefore the system is

difficult to extend. Another problem is that, in order to handle different record types, offset and length information

must be passed explicitly to each routine. In addition, the programmer is responsible for coding offset calculations

and for interpreting untyped buffer pages. One of the original goals of E was to make such mechanical tasks impli-

cit. We were inspired by CLU generators [Lisk77] (not to be confused with Alphard generators) as providing an

elegant solution to the problem.

A generator is a parameterized type, i.e., one that is defined in terms of one or more unknown (formal) types.

The classic example is the generic type stack[ T ], which, given any element type T, defines the type of a stack of T

elements. In the case of our binary tree, we will make it a generic class by introducing two type parameters: the

type of the key and the type of the entity being indexed.

4.1. Generator Classes in E

E introduces parameterized types in the form of generator classes5. A generator class may have any number

of class parameters; the formal class names may be used freely within the generator like regular type names, e.g., as

data member types, as argument or return types for member functions, or as a basis for other type definitions. Syn-

tactically, a generator class has the form of a regular class, except that the formal parameters are specified in square

brackets following the class name. The parameters themselves have the form of (skeletal) class declarations. For

example, the definition of a bounded generic stack class is shown in Figure 6. We shall omit showing the stack

member functions, since the only notable feature is that T is used wherever the name of the element type is needed.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5We note that generics have recently been added to C++ (v.3.0 and beyond) in the form of templates. E generator classes

and C++ templates will be compared in Section 4.3.2.
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4.1.1. Instantiation

In order to use a generic class, we must first instantiate a specific class by supplying actual arguments to the

generator. For example, assume we have defined class frame; we can then define the type of a stack of frames by:

class frameStack : stack[ frame ];

Given this definition, we can now declare and use frameStack instances. For example:

frameStack S1; // S1 is a frameStack instance
frame f; // f is a frame
S1.push( f ); // push f onto S1

Attempting to push anything but a frame onto S1 will be flagged as a type error at compile time.

4.1.2. Constraints on Class Parameters

If a class parameter is specified with an empty body, as in the stack example, then any type may be used to

instantiate the generator. We could, for example, define intStack to be stack[ int ], even though int is not really a

class. However, the programmer may also specify constraints on instantiating types by "fleshing out" the parameter

class body with member function declarations; only classes having member functions with the same names and

type signatures can be used to instantiate the generic class. Furthermore, within the generator, these member func-

tions may be invoked on objects of the parameter type. For example, the binary tree class can be made generic by

introducing two type parameters, one of which is the key type. In order for a key type to be useful, however, we

must be able to compare two key values to determine ordering. One means of accomplishing this is to constrain the

key type:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

class stack[ class T { } ]
{

int top; // top-of-stack index
T stk[ 100 ]; // the elements

public:
stack(); // constructor

T pop();
void push( T );
int isEmpty();

};
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 6: A Generic Stack Class Declaration
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class binaryTreeNode
[

class keyType
{ public: int compare( keyType* ); },

class entityType { }
]
{ ... };

With this declaration, an actual class may be bound to keyType only if it has a public member function compare

that takes a keyType pointer and returns an integer. Within the search routine, we can now compare keys as fol-

lows:

int cmpVal = searchKey.compare( &nodeKey );
if( cmpVal < 0 )

{ ... }
else if( cmpVal == 0 )

{ ... }
else

{ ... }

Of course, there is an additional requirement that the integer returned by the compare function be less than, equal to,

or greater than zero corresponding to the ordering of the two keys. Such semantic constraints cannot be expressed

within the type system, however.

4.1.3. Function Parameters

One shortcoming of the above approach is that, while the names of class parameters are formal names, the

names of any member functions included as constraints are actual names. In the example above, any class may

instantiate keyType provided that it has a member function whose name is literally compare. While this may be

useful in some contexts, in others it may be too restrictive. For example, we may have a pre-existing class that has a

comparison routine, but the routine’s name may not be compare. We may also have a class defining several dif-

ferent comparison routines corresponding to different criteria for ordering instances. To overcome this problem, E

allows member functions of a parameter class to be named as separate, formal parameters to the generic. For exam-

ple, we could redefine our generic node class as follows:

class binaryTreeNode
[

class keyType{ },
class entityType{ },
int keyType::compare( keyType* )

]
{ ... };

The parameter keyType may be instantiated with any class having some member function that takes a keyType

pointer and returns an integer; the name of the specific member function must be supplied at instantiation time. If
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the programmer wishes, the formal or actual member functions (or both) may even be overloaded operators. (For

our examples, we have chosen to pass a single compare routine, but we could have instead passed a pair of over-

loaded operators, < and ==.)

To illustrate these points, assume that we have a class dataPoint for recording experimental observations and

that we wish to build an index over such points. The key is to be a complex number taken from the experimental

data, where complex is defined as follows:

class complex {
/* representation... */

public:
int cmpImag( complex* ); // compare imaginary parts
int cmpReal( complex* ); // compare real parts

};

We may then instantiate a node type in which the keys are ordered by their imaginary parts as follows:

class complexNode : binaryTreeNode[ complex, dataPoint, complex::cmpImag ];

Despite the flexibility provided by member function class parameters, the approach above still falls short in

some cases. One remaining problem is that it is not possible to directly instantiate a binary tree with a fundamental

key type (e.g. float), as such types are not classes and do not have comparison methods. Another problem is that it

is a relatively common C++ coding practice to define comparison routines (and other symmetric binary operators)

for a class as friend functions6 rather than as member functions of the class. Thus, while the actual key type might

be a class, the comparison routine might not be a member function. To handle these cases, E also allows normal

functions to be generic class parameters, as the following example illustrates:

class binaryTreeNode
[

class keyType{ },
class entityType{ },
int compare( keyType*, keyType* )

]
{ ... };

Here, any type (including a fundamental type) may instantiate keyType, and any (non-member) function having a

matching signature may used to instantiate compare. This is the solution we will use in our ongoing binary tree

example.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6A class can declare any function to be a friend. Such a function is not a member of the class, but it is permitted to access

the class’s representation.
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4.1.4. Constant Parameters

The last kind of class parameter that E supports is a constant value. The parameter may be of any fundamen-

tal type and, within the generator class, it may be used freely as a const. The value used in an instantiation must be

a compile time constant. This is particularly useful in defining array members whose size depends on the particular

instantiation. For example, we may define a generic stack class such that the maximum number of elements is a

class parameter:

class stack [ class T { }, int STKMAX ]
{

int top;
T stk[ STKMAX ];
...

};

We may then define a class for stacks of one hundred integers as follows:

class intStack : stack[ int, 100 ];

4.2. Nested Instantiations

We have shown how to define binaryTreeNode as a generator class. In order to define the wrapper class,

binaryTree, as a generic, we must arrange for binaryTreeNode to be instantiated automatically whenever a user’s

program instantiates binaryTree.

E allows a new type to be defined within the scope of a class, along the lines of C++ 2.1 [Elli90]. In E, creat-

ing types in this way includes defining a type by instantiating a generic. Furthermore, within the context of a gen-

erator class GA, we may instantiate another generator GB by supplying GA’s parameters to GB; then any instantia-

tion of GA with actual parameters causes a nested instantiation of GB. Thus, we can make the binaryTree class a

generator as shown in Figure 7. Within the context of binaryTree, a new class btn is instantiated from

binaryTreeNode by passing along the parameters supplied to binaryTree. We will complete this class definition

in the next section.

4.3. Discussion and Comparison with Related Work

In E, a generic class is not a true type, and no objects can be declared of such a class. This is in contrast to

languages like ML [Miln84] and Fun [Card85], whose type systems support truly generic objects, e.g., a generic

identity function in which the return type depends on the type of the actual parameter. E follows the more common

practice of defining a generic to be a "mold" for creating new types, and instantiation of a type is defined to be

(essentially) equivalent to macro expansion of the generic class definition. Note, however, that this does not imply a

macro expansion implementation. (In fact, E follows CLU [AtkR78] in compiling generic code that is shared by all

instantiations.) Other languages that define generics similarly include CLU [Lisk77], Ada [Ichb79], Trellis/Owl
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class binaryTree
[

class keyType{ },
class entityType{ },
int compare( keyType*, keyType* )

] {
class btn : binaryTreeNode[ keyType, entityType, compare ];
btn *root;

public:
binaryTree();
entityType * search( keyType );
void insert( keyType, entityType* );

};
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 7: A Generic Binary Tree Class

[Scha85], and Eiffel [Meye86].

Another language that supports generics of this sort is the most recent version of C++, i.e., C++ v.3.0 [Elli90].

A generic class or function in C++ v.3.0 is called a template. Unlike an E generator class, a template class cannot

specify constraints on the instantiating type. However, the member functions of a template class can invoke

methods of the (unknown) actual parameter type; this design implies that instantiating a template with a type that

does not supply the required methods is an error that may not be detected until link time [Elli90]. In E, such an

error would be caught at compile time. Unlike C++ templates, E does not directly provide generic functions. The

same effect can be achieved in E, however, by defining the function as a static member of a generic class.7

In C++ v.3.0, a class created from a template can serve as a base class for further subtyping. Furthermore, a

template class T1 may inherit from a non-template class C or from another template class T2. In the former case,

any class instantiated from T1 becomes a subclass of C. In the latter case, any class instantiated from T1 becomes a

subclass of one instantiated (automatically) from T2 with the same parameters. For example, in C++ v.3.0, we can

define Set<T> to inherit from Collection<T> so that for a specific type T’, Set<T’> is a subtype of

Collection<T’>. Trellis/Owl [Scha85] and Eiffel [Meye88] also support this kind of definition.

Similar to C++, E allows a class instantiated from a class generator to serve as a base class for further subtyp-

ing. E also allows a generator class to inherit from other types or generics, thus supporting the incremental

definition of generic types. Unfortunately, E does not define any subtype relationships between types instantiated
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7If a member function of a C++ class is declared static, then it exists independently of any object of the class and may be
invoked directly by using the scope resolution operator ( :: ). For example, C::f( ); is a valid invocation of static member function
f of class C.
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from such classes. From a language design standpoint, this is certainly a flaw; fortunately, it has not proved to be a

problem in practice. On the other hand, E’s support for constraints on class parameters has been very useful.

Finally, E’s implementation of generics in terms of shared, generic code has allowed us to write large, separately-

compiled generic modules (e.g., a B+ tree index). Such large packages would have been impractical with a macro-

expanding implementation.

Generator classes were designed and implemented prior to the appearance of the C++ template design

[Stro88]. Thus, E diverged from C++ in this respect. Later, while templates were still only a design, we were con-

tent to continue. Now that templates are finally available, however, we have had to reconsider. Despite the relative

strengths of E’s generator design and the possibility of correcting its flaws, we currently plan to drop generator

classes in favor of templates when we move to version 3.0. Clearly, it would be a mistake to support both genera-

tors and templates, as the result would likely be impossible to understand or to maintain. Equally clearly, the C++

community is going to become familiar with templates and will be (justifiably) reluctant to program in E if they are

required to switch to generators. Given these realities, adopting C++ templates in future releases of E seems like the

best choice.

5. DB TYPES & PERSISTENCE

In the discussion so far, we have described language extensions in E that allow the programmer to process

sequences of values and to define parameterized types. Both features are important for database-style programming.

However, the data objects available to the program thus far are still volatile objects whose lifetimes are bounded by

a program run. We now introduce the features of E that allow a program to create and use persistent objects and

thus to describe a database or object base, together with its operations, strictly within the language.

5.1. Database Types

E mirrors the existing C++ types and type constructors with corresponding database types (db types) and type

constructors. Any type definable in C++ can be analogously defined as a db type. Db types are used to describe the

types of objects in the database, i.e., the database schema. However, not every db type object is necessarily part of a

database; db type objects may also be allocated on the stack or in the heap. We will shortly convert the binary tree

class into a db type.

Let us informally define a db type to be:

(1) one of the fundamental db types: dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, and dbvoid. Fundamen-

tal db types are fully interchangeable with their non-db counterparts, e.g., it is legal to multiply an int and a

dbshort, assign a dbint to a float, etc.
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(2) a dbclass (or dbstruct, or dbunion). Every data member of a dbclass must be of a db type. The argument

and return types of member functions may be either db or nondb types.

(3) a pointer to a db type object. The usual kinds of pointer arithmetic are legal on db pointers, and casting is

allowed between one db pointer type and another. It is not possible to convert a db pointer into a normal

(non-db) pointer, nor into any non-pointer type (e.g., int).

(4) an array of db type objects. As in C or C++, an array name is equivalent to a pointer to its first element.

(5) a reference to a db type object.

5.2. The persistent Storage Class

Having db types allows the E programmer to define the types of objects in the database. The persistent

storage class provides the basis for populating the database. If the declaration of a db type variable specifies that its

storage class is persistent, then that variable survives across all runs of the program and across crashes. A simple

example is a program that counts the number of times it has ever been run:

persistent dbint count = 0;
main() { printf("This program has been run %d times.", count++ ); }

Here, the integer count is a persistent variable whose initial value is set to 0. Each time the program runs, it prints

the current value of count and then increments it. Note that there are no explicit calls to read or write count, and

there are no references to any external files; I/O is implicit in the program. The great convenience of language sup-

port for persistence is that it allows the programmer to concentrate on the algorithm at hand rather than on the

details of moving data between disk and main memory [AtkM83].

In the first implementation of persistence, the E compiler interacted with the runtime system to reserve a

storage location for the object; this address was compiled into the code as a constant [Rich89b]. The current imple-

mentation uses a more flexible scheme that defers binding to a storage location until runtime. The persistent store

keeps a map for translating the variable names in each E source file into their corresponding storage locations in the

EXODUS Storage Manager. When an E program starts to run, it first interacts with the persistent store to obtain the

current object address of every persistent variable named in the program. If an object has no current address, either

because the program is running for the first time or because the object has been deleted8, it is created at that time.

While this scheme is a substantial improvement over the original implementation, there are still problems concern-

ing naming that we shall discuss in Section 6.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8Deletion of named persistent variables is not defined within the language. We provide a separate utility for this task.
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5.3. Collections

E provides the built-in generator db class collection[T] to allow the dynamic creation and deletion of objects.

For a specific type T’, a collection[T’] may contain objects of type T’ or any subtype of T’. The lifetime of an object

within a collection is bounded by the lifetime of the collection; in particular, if a program creates an object in a per-

sistent collection, then that object will also be persistent. Like any generic class, the programmer must first instan-

tiate a specific type of collection before declaring a collection object. As with objects of any db type, a given col-

lection may be volatile or persistent, depending on the declaration, and it may be a data member of another class. It

should be noted that it is also possible to define heap-like collections, capable of containing objects of any type, by

instantiating the built-in collection class with the argument dbvoid.

5.3.1. Creating Objects in a Collection

In C++ v.2.0, one may overload the new operator in order to take control of storage allocation. E uses this

mechanism to allow programs to create objects in a collection. As an example, suppose that person is defined as a

dbclass and that it has a constructor that takes a character string containing the person’s name. The following E

code defines a type describing collections of persons, declares an instance of that type, and creates two people

within the collection:

dbclass person { ... };
dbclass City : collection[ person ];
City Madison;
person * p1 = new( Madison ) person("Jane");
person * p2 = new( Madison, p1 ) person("Toby");

As shown above, the overloaded new operation takes one or two additional arguments. The first argument specifies

the containing collection for the newly allocated object; the argument can be any expression that evaluates to a col-

lection, as long as the type specified for the new object is the same as or a subtype of the type of entity in the collec-

tion. The compiler can verify this condition since both the type of the collection and the type of the object being

created are manifest. In this example, we are creating instances of person in a collection of persons, but if, for

example, student were a subtype of person, we could also create student instances within this collection.

Note that a collection in E is similar to a typed heap in that objects are allocated and deallocated in them,

rather than inserted or removed. Since an object can exist in only one collection, some tasks can be slightly awk-

ward. For example, to simulate the object’s appearing in another collection C, we would have to declare C as a col-

lection of pointers. However, this design is in keeping with the purpose of E: to be a low-level language supporting

the implementation of higher-level data models. For example, a class extent in a higher-level data model could be

implemented as a collection of objects, while sets could be implemented as collections of pointers.
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5.3.2. Physical Clustering

When objects are stored on disk, their locations relative to one another can have a significant impact on

overall performance. Generally speaking, objects that will be used together should be stored together if possible.

The second new argument, which is optional, allows the programmer to communicate physical clustering hints to

the storage layer. The second new in the example above requests that the new person (Toby) be created near the

object referenced by p1 (Jane).9 In general, the second argument to new may be any pointer-valued expression,

and the referenced object need not be of the same type nor in the same collection as the newly created object. It is

up to the implementation of the underlying storage layer to determine what "near" means, and at worst, the hint will

be ignored. In the current implementation of the EXODUS Storage Manager, the search for a nearby location

begins on the same disk page if the objects are allocated in the same collection, and on the same disk cylinder other-

wise [Care89].

5.3.3. Scanning Collections

The collection generator class has an iterator member function, scan(), for scanning all of the elements in a

collection. This iterator returns a sequence of pointers to the objects in the collection. The following example

processes all of the people in Madison:

iterate( person * p = Madison.scan() ){ ... }

Note that even though a collection of T may contain objects of a subtype of T, a scan always returns T

pointers. For example, the preceding scan always yields a person*, although some instances in the collection might

be of type student. The introduction of multiple inheritance in C++ v.2.0 posed some challenges in the implemen-

tation of collection scans. The challenges stem from the fact that an E collection is implemented as an EXODUS

Storage Manager file, which only records the OIDs of the objects that it contains. A file scan thus produces a

pointer to the beginning of each object. However, this is not necessarily the correct pointer to return to the E pro-

gram. For example, suppose class C has supertypes A and B, and we create a C object in a collection[B]. Now

suppose that we scan the collection, obtaining a B pointer to each object in turn. When the scan encounters the C

object, the returned pointer must be adjusted to refer to the "B part" of the object. Mechanisms to accomplish this

and to handle virtual base classes have been implemented.10 Note that the existing C++ mechanism for moving up
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

9 In E v.1.2, in and near clauses were added as new syntax extensions. We have elected to drop this syntax in favor of the
new operator overloading capability introduced in C++ v.2.0. Under the old E syntax, the second new example would have
read:

p2 = in( Madison ) near( p1 ) new person("Toby");
10The offset of the B part is stored in the object header (provided by the EXODUS Storage Manager), and the scan iterator

adjusts the pointer by this amount before returning it to the client. If B is a virtual base class, then the object header contains the
offset of the virtual base pointer within the object, in which case the scan iterator retrieves the pointer out of the object itself and
returns it. In either case, the appropriate B part must be unambiguous or else an error will be reported by the compiler when it
processes the new statement that attempts to create a C object in the collection[B].
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the type hierarchy (in which the compiler inserts code to adjust the pointer) does not apply in this situation, as it is

not known until runtime that a particular object returned by the scan is actually of type C.

5.3.4. Destroying Objects and Collections

The usual C++ delete operator may be used to remove an object from a collection. For example, we can

delete Toby (in the previous example) with:

delete p2;

If the object’s type has a destructor, the destructor will be called first and then the object will be destroyed.

If a collection is destroyed, the objects that it contains are also destroyed. If the collection contains objects of

a class having a destructor, then the destructor will be invoked on each object before the collection is destroyed.

Assume that we wish to delete Madison, which is a collection[person]. Conceptually, this process involves the

following steps:

iterate( person * p = Madison.scan() ) { delete p; }
/* now destroy the empty collection... */

For performance reasons, however, our implementation does not actually destroy the objects individually. Rather,

the destructor calls de-initialize each object, and then the entire collection is destroyed en masse.

The semantics of persistent object destruction parallel those of volatile object destruction and consequently

inherit all of the same problems. In particular, dangling references are possible. Since the storage layer never

reuses object ids, however, we prevent the worst effect of dangling references, i.e., the overwriting of random data.

Other problems associated with explicit deletion, such as creation of garbage, are not addressed by our design. C++

relies on destructors to ensure proper cleanup when an object is deleted. In designing E, we elected to extend the

existing semantics to persistent objects rather than attempting to define implicit deletion semantics for C++.

5.4. The Binary Tree Example Revisited

Let us now (finally) reimplement our binary tree example as a db type. Unlike the previous incremental

examples, here we reproduce the entire implementation for comparison with the original C++ version. The node

class shown in Figure 8a has changed from the C++ version of Figure 1a in the following ways: The insert routine

accepts duplicates, and the search routine is an iterator (as developed in Section 3). The key and entity types are

type parameters, and the key comparison routine is a function parameter (as developed in Section 4). The class

itself is a dbclass (as developed in this section).

Figure 8b shows the binary tree class. In order to define this class, we must first instantiate two new classes

which we will then use. The class btn is binaryTreeNode instantiated with the same parameters as for

binaryTree, i.e., this is a nested instantiation as described in Section 4. Next, btnSet is instantiated as a type of
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dbclass binaryTreeNode [
dbclass keyType{ },
dbclass entityType{ },
int compare( keyType*, keyType* )

] {
keyType nodeKey;
entityType *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

public:
binaryTreeNode( keyType, entityType * ); /* constructor */
iterator entityType * search( keyType );
void insert( binaryTreeNode * );

};

binaryTreeNode::binaryTreeNode( keyType insertKey, entityType * insertPtr ) {
nodeKey = insertKey;
entPtr = insertPtr;
leftChild = rightChild = NULL;

}

iterator entityType * binaryTreeNode::search( keyType searchKey ) {
int cmp = compare( &searchKey, &nodeKey );
if( cmp <= 0 ){

if( leftChild != NULL )
iterate( entityType * p = leftChild→search( searchKey ))

yield p;
if( cmp == 0 )

yield entPtr;
} else

if( rightChild != NULL )
iterate( entityType * p = rightChild→search( searchKey ))

yield p;
}

void binaryTreeNode::insert( binaryTreeNode * newNode ) {
int cmp = compare( &(newNode→nodeKey), &nodeKey );
if( cmp <= 0 )

if( leftChild == NULL )
leftChild = newNode;

else
leftChild→insert( newNode );

else
if( rightChild == NULL )

rightChild = newNode;
else

rightChild→insert( newNode );
}

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8a: The Binary Tree Node Class
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dbclass binaryTree
[

dbclass keyType{ },
dbclass entityType{ },
int compare( keyType*, keyType* )

]
{

dbclass btn : binaryTreeNode[ keyType, entityType, compare ];
dbclass btnSet : collection[ btn ];

btnSet allNodes;
btn *root;

public:

binaryTree(); /* constructor */
iterator entityType * search( keyType );
void insert( keyType, entityType * );

};

binaryTree::binaryTree()
{

root = NULL;
}

iterator entityType * binaryTree::search( keyType searchKey )
{

if( root == NULL )
return;

else
iterate( entityType * p = root→search( searchKey ))

yield p;
}

void binaryTree::insert( keyType insertKey, entityType * insertPtr )
{

btn * newNode = new( allNodes ) btn( insertKey, insertPtr );
if( root == NULL )

root = newNode;
else

root→insert( newNode );
}

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8b: The Binary Tree Class

collection containing btn nodes. The binary tree itself is now represented as allNodes, a collection containing the

nodes, and root, a pointer to the root node. On an insert, the new node is allocated in the tree’s collection. Other

changes to the binary tree class parallel those made for the node class, i.e., the use of type parameters, and the

definition of search as an iterator.
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Finally, Figure 8c shows an example using a persistent binary tree index. This program builds an index over

students keyed on grade point average (gpa). Since the students must persist, we first define school as a collection

of students, and we declare a persistent instance, UWmadison, of this type. We then define a comparison routine

for floating point numbers, and we use this routine, along with the types student and dbfloat, to instantiate a specific

index type. Next we declare a persistent index, gpaIndex. Finally, the main program shows examples of creating a

new student and adding the corresponding index entry and of iterating over all students with a given gpa.

5.5. Implementing a Disk-Based Index

The binary tree example developed in this paper is clearly hinting at the implementation of "real" database

index structures, e.g., B+ trees, in which each node contains many keys. In defining such structures, an essential

constraint is that each index node must fit on one disk page and must make maximal use of the space on that page.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

dbclass student{ ... };
dbclass school : collection[ student ];
persistent school UWmadison;

int compare( dbfloat * x, dbfloat * y )
{

float cmp = (*x - *y);

if( cmp < 0 )
return -1;

else if( cmp == 0 )
return 0;

else
return 1;

}
dbclass gpaIndexType : binaryTree[ dbfloat, student, compare ];
persistent gpaIndexType gpaIndex;

main() {
student * s;

s = new( UWmadison ) student( ... );
gpaIndex.insert( s→gpa, s );

iterate( student * s = gpaIndex.search( 3.0 ))
...

}
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8c: Example Using a Persistent Binary Tree
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If we define the node type as a generic class, then the number of keys that will fit on a page varies with the specific

key type. One approach is to define the generator with a constant parameter, as we did in the stack example of Sec-

tion 4. However, this approach forces the user of the class to compute the maximal number of keys for each instan-

tiation.

An easier approach is to make use of the fact that within a generator, the expression sizeof(T), where T is a

type parameter, is treated as a constant and may be used in declaring array bounds. For example, assume that

PAGESIZE is a constant giving the size of a disk page in bytes. In Figure 9, we have outlined the definition of a

simplified generic class describing leaf nodes in a B+ tree; each node is to contain an array of key-pointer pairs

where the number of array elements is the maximum that will fit on one page. Like the binary tree example, this

class is parameterized by the key and entity types and by the key comparison routine. For convenience, we have

defined an auxiliary type, kpp, for key-pointer pairs; the tree node is an array of these structures. Note that since

kpp is defined in terms of class parameters, it is also a generic type, and it is implicitly instantiated with each instan-

tiation of BTreeLeaf. We then define two macros for convenience. The amount of usable space on a page is the

size of the page minus any overhead for control information; in this simple example, the only control data is an
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dbclass BTreeLeaf
[

dbclass keyType{ },
dbclass entityType{ },
int compare( keyType*, keyType* )

] {
/* auxiliary definitions */
dbstruct kpp {

keyType keyVal;
entityType * entPtr;

};

#define MAXSPACE (PAGESIZE - sizeof(dbint))
#define MAXENTRIES (MAXSPACE / sizeof(kpp))

/* data members */
dbint nKeys;
kpp kpPairs[ MAXENTRIES ];

public:
...

};
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 9: A Generic DbClass for B+ Tree Leaf Nodes
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integer giving the current number of entries in the array. Finally, the maximum number of array entries is the

amount of available space divided by the size of an entry, i.e., by sizeof( kpp ). The data member, kpPairs, is then

defined to be an array whose dimension is this maximum.

5.6. Comparison with Other Persistence Mechanisms

5.6.1. Reachability

The style of persistence provided by E might be termed "allocation-based" persistence. That is, an object is

persistent only if it is created as such, either by being declared a persistent variable or by being created within a

persistent collection. This approach is quite different from reachability-based persistence, in which an object per-

sists if it is reachable from one or more distinguished roots. A number of persistent languages and OODBMSs to

date have adopted the latter approach, e.g., PS-Algol [AtkM83], Galileo [Alba85], GemStone [Maie86], Zeitgeist

[Ford88], and PGraphite [Tarr90]. Reachability is perhaps a more convenient mechanism for the programmer, who

no longer needs to worry about persistent objects containing dangling references, e.g., to a reclaimed volatile object.

It also allows greater flexibility in that a program can decide whether an object should become persistent after it

already exists. In E, a volatile object can be "made" persistent only by copying its value into a persistent object.

We elected not to base E’s persistence on reachability for several reasons. As mentioned earlier, we first

envisioned E as being a target language for the compilation of higher level data models. We felt that in such a

language, the persistence of a given object should be an explicit property rather than an implicit side-effect of being

part of a particular data structure. Perhaps a more compelling reason (for E) is that reachability fits most naturally

into a garbage-collected language. That is, the reachability traversal for determining persistence requires the same

information as that for garbage collection. Because E is an extension of C++, basing E’s persistence on reachability

would have required that database types (at least) be quite different from their C++ counterparts, something that we

wanted to avoid. For example, we would probably have had to disallow persistent unions (or change the semantics

of union) since they do not carry enough information to determine which member is "active."

5.6.2. Collections and Class Extents

A central issue in the design of a database programming language is how (or whether) collections of persistent

objects are defined. Pascal/R [Schm77] introduced relation as a type constructor; tuples could be added or deleted

under program control, although the relations themselves could only be named variables. One implication of this

restriction is that nested relations were not allowed. Other DBPL’s, e.g., Rigel [Rowe79] and Plain [Wass79], took

a similar approach with similar restrictions. PS-Algol [AtkM83], the first language providing fully general (orthog-

onal) persistence, made the runtime heap the basis for persistence. Any object reachable from a distinguished "data-

base root" pointer would persist. However, the persistent heap had no notion of a collection of objects; such a
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collection would have to be coded explicitly as a persistent data structure. E takes an intermediate approach. Like

the DBPL’s, a given collection stores a specific type of object, and there are facilities for processing all of the

objects in a collection. Like PS-Algol, there are no restrictions on the type of object that may be persistent (except

that it must be a db type); for example, one may define collections of collections. E does not provide an implicit

persistent heap, however; the dynamic creation of a persistent object in E requires the specification of a collection

in which to create the new object.

Another popular approach to persistence is to support class extents. An extent is the set of all instances of a

class; when an instance is created, the system automatically places the object within the proper extent. Programs

can then use class extents to form the basis of queries. Most systems that support extents also define inclusion

semantics for subtypes, so the extent of a class includes the extents of all subclasses. A query over an extent may

specify whether or not to include subclass extents. Examples of systems that support extents include Orion

[Bane87], O2 [Banc88], PCLOS [Paep88], and O++ [Agra89].

Extents are a simple, convenient, and fairly natural way to add persistence to an object-oriented language,

especially if one is focusing on database applications. In fact, extents may be seen as an extension of relational

DBMS semantics: just as a relation defines both a tuple type and all existing tuples, so does a class define an object

type and all existing instances. However, we did not feel that extents were appropriate for E, since they associate

persistence with types rather than with instances. In a general-purpose implementation language like E, we wanted

to be able to implement extents if desired, but not to force them in all cases.

6. DISCUSSION

So far, we have presented the design of the E language and have shown examples of its use. Of course, the

true test of a language’s practicality is in its implementation and actual use. We have built several E compilers, and

we have explored five distinct implementations of persistence [Rich89b, Rich90, Schu90, Shek90, Whit92]. Furth-

ermore, we (and others) have used E to build a number of persistent applications. This experience has revealed the

language’s weaknesses as well as its strengths, and it uncovered some interesting implementation challenges. In this

section, we describe some of the more interesting issues. A detailed evaluation of E will appear in a forthcoming

paper.

6.1. Language Design Issues

6.1.1. Naming Persistent Objects

The idea of defining a new storage class struck us as a very clean approach to extending C++ with a per-

sistence mechanism. Just as an auto variable lives for one procedure invocation, and a static variable lives for the

lifetime of a process, a persistent variable was to live across processes, as a kind of "super" static object. Under
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this definition, the name of a persistent variable is not merely a handle for some object in the persistent store, but it

is actually a denotation of the object itself.

In retrospect, this approach has drawbacks in the area of name space management. Since the names of all

top-level persistent objects are variable names, the name space seen by an E program must obey C++ scope rules.

The sufficiency of these rules for writing large non-persistent applications is questionable, and they are even more

restrictive for organizing a large database. For example, sharing can be hampered by the fact that a program cannot

include two persistent variables (from two different E modules) that have the same name, just as clashes in transient

global variable names are disallowed. Similarly, long term program evolution is hampered since it is not currently

possible to change the name of a persistent E object once it has been created. Finally, writing general-purpose code

can be impeded by the early binding of names to objects, although the use of procedures can largely alleviate this

problem.

While it is possible to circumvent most of these problems, doing so requires a fair amount of foresight and

care when developing a large E program. An alternative would have been to separate the names of objects in the

persistent store from the names used in the program text. For example, we could have chosen to limit persistent

variable access to pointer traversals, requiring pointer variables to be bound to specific objects via runtime calls

(similar to opening a file). Our feeling was that adding persistence as a storage class was more natural, somehow;

moreover, it doesn’t prevent E programmers from simulating the latter approach by building and using a directory

class to manage the name space of persistent objects dynamically.

6.1.2. Orthogonality

One of the more controversial design points was our decision to give E a "two-headed" type system, rather

than simply to introduce persistence as an orthogonal property of all types. Orthogonality is, after all, often cited as

a desirable feature of a persistent language [AtkM83, AtkM87], and some users of E have complained about its dual

approach [Hans91]. The motivation for E’s use of db types stems both from philosophy as well as implementation

concerns. First, E was originally conceived as a language in which to write database management systems. In such

systems, there is a clear distinction between those objects that persist and those that are volatile. For example, lock

tables and transaction descriptors are definitely not persistent, while objects in the database definitely are. The "db"

attribute of a type distinguishes between objects that may be persistent and those that are definitely volatile. We

note that O++, which was designed more recently than E, makes a similar distinction [Agra89].

The separation of normal types from db types also has a strong grounding in performance considerations.

Those same system resources that are known to be volatile (e.g., those mentioned in the previous paragraph) are

often the ones that are accessed with the highest frequency. If every object reference might be a persistent refer-
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ence, then every access must check that the needed object is in memory.11 Even if the check costs only one

boolean test, we might still significantly increase the cost of accessing these critical system resources. In E,

accesses to non-db type objects suffer no loss of performance over the same accesses in C++.

In addition to the cost of a pointer dereference, another factor in our decision to introduce db types was the

representation of pointers. On a VAX, a pointer is 32 bits, giving an address space of approximately 4 GB. How-

ever, databases are already exceeding this limit and, in fact, are moving into the terabyte range. If persistence were

orthogonal to all types, then we would be faced with several not very appealing alternatives. We could make all

pointers 32 bits, and thus guarantee that E would already be obsolete for real world applications. Alternatively, we

could make all pointers be "large enough" for our projected needs. In the current implementation, E uses the

EXODUS Storage Manager [Care89] as its persistent store, so every E pointer involves an EXODUS object id (12

bytes) plus an offset (4 bytes). Thus, this approach would quadruple the space needed, and also the copying cost,

for every pointer; neither would be desirable from the standpoint of achieving good program performance

[Rich89a].

6.2. Implementation Issues

While the preceding sections discussed issues related to the language design, in this section we turn our atten-

tion to shortcomings in its implementation. As we shall see, these problems stem largely from the C/Unix model of

creating and running programs, a model which we attempted to preserve in E. It has become all too apparent that

this model is insufficient for supporting a persistent language and that an integrated programming environment is

needed.

6.2.1. Type Persistence

In C and C++, type definitions are shared between compilation units via textual inclusion of header files.

There is no notion of a type existing outside of any particular run of the compiler. A given type, T, used to compile

one module may or may not be the same T used to compile another. This mechanism is acceptable (though not par-

ticularly desirable) for C and C++ programming. For E programs, however, it is critical that the definition of a type

remain consistent across compilations. If an object created with type T is later manipulated by a program with a dif-

ferent definition of T, the database can be easily corrupted. If persistent objects were limited to simple C structures,

then very careful programming could avoid this problem. For an object-oriented language with persistence,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11This is not necessarily true for all persistent language implementations. For example, it is possible to implement an
object-faulting mechanism that relies on the machine’s paging hardware (e.g., see [Shek90, Lamb91]). However, such mechan-
isms tend to limit either the space of addressable objects [Shek90] or the space of concurrently addressable objects [Lamb91] to
the size of the machine’s virtual address space; they can also have performance problems when programs operate on large (rela-
tive to physical memory) databases [Shek90].
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however, even careful programming is insufficient. In order to support late binding of method invocations, each

object must carry enough information to identify its own type uniquely. In the face of persistence, the identity of a

type must also persist.

This issue of persistent type identity is fundamentally at odds with the existing model of writing C programs

under Unix. A complete solution to these problems requires an integrated programming environment that provides,

among other features, a type library in which a type has an identity independent of any particular compilation. It

also requires answering some hard questions such as: How are types shared between programmers? If a type

changes, is it still the same type? If so, what happens to existing objects of that type, and if not, how can old pro-

grams use the new type?12

These issues extend well beyond the scope of our original intentions in designing E. Thus, our implementa-

tion provides only a partial solution to the type identity problem, a solution based on computing a hash value from

the class definition. An approximation to type identity is achieved in this way, without environment support, since

the same class definition will hash to the same value in different compilations. When a persistent class instance is

created, the class’s hash value is stored in the object, later identifying the object’s type during method dispatch. Of

course, hash collisions are possible, though extremely unlikely; an E program that includes two classes with the

same hash value simply terminates itself at startup time. While we considered several alternative designs, this one

seemed to be the best initial compromise.

6.2.2. Type Availability

While computing hash values provides an initial solution to the type persistence problem, there is another

related issue that it does not address. The problem is that it is possible for a program to encounter an object whose

type was not known when the program was compiled. To see how this problem arises, let us first consider the

implementation of C++. Here, it is assumed that every object encountered by a program was created by that pro-

gram. As a result, for every type of object encountered, there is at least one module of the program (i.e., the one

that created the object) that knows about its type. The implementation of virtual function dispatch can then assume

that both the method dispatch table (vtbl) and the method code itself are somewhere in the program’s address space.

Unfortunately, these assumptions can break down in the presence of persistence. Suppose we have a per-

sistent graph, G, whose nodes are of type T1. Suppose that we write a program P1 that traverses G, invoking a vir-

tual function on each node. In order to compile P1, we need only include definitions for T1 and its base classes (if
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

12The latter questions relate to the problem of schema evolution, a well-known hard problem in database systems.
Researchers in object-oriented database systems have offered several approaches to the problem [Bane87, Penn87, Skar87],
although none seems entirely satisfactory.
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any). Now suppose we write another program P2 that defines T2 as a subtype of T1 and adds a T2 node to G. If we

then run P1, the program will terminate with an error when it invokes the virtual function on the new node. Note

that this is not a type error; T2 is a subtype of T1, and the invocation is legal. The problem is that neither the vtbl

for T2 nor any of T2’s methods are available to P1.

As was the case with type persistence, the root of the problem lies not in the language design itself, but in the

language’s implementation within the context of an environment that does not adequately support persistence. Pro-

viding such support would involve a significant amount of effort. Programs would have to become objects in the

database, and an execution would involve incremental dynamic linking of method code. The environment would

have to track dependencies between programs and the persistent objects they create. Tools would have to be pro-

vided to allow users to build, execute, debug, and evolve programs within the environment. This, in turn, would

require us to define a model of programs and the programming process. While these are all very interesting and

important problems, they fall far outside the scope of the EXODUS project. Thus, at least for the present, maintain-

ing E programs under Unix can sometimes be awkward.

6.2.3. Transactions

The first implementations of E had only a primitive notion of transaction. Each program run constituted one

transaction. Current support is somewhat better: library calls are available to begin, commit, or abort a transaction.

These calls are supported by the current implementation of the EXODUS Storage Manager, which provides atomic,

recoverable transactions. The persistent data touched by a transaction is locked in a two-phase manner, and

recovery is provided via write-ahead logging. At present, a program is limited to executing a series of independent,

flat transactions; in the future, we may provide nested transactions. We also expect to integrate E’s transaction sup-

port with the recently introduced facilities for handling exceptions in C++ [Elli90].

7. OTHER RELATED WORK

Throughout this paper we have compared particular features in E with other languages having similar

features. Thus, most of the important comparisons with other languages have already been made. In this section,

we focus our attention on comparing E with several other languages that have also extended C++ with persistence.

7.1. Avalon/C++

Avalon/C++ [Herl87, Detl88] is a language designed to support reliable distributed computing. This language

utilizes the inheritance mechanism of C++ to allow programmers to design data types having customized synchroni-

zation and recovery properties. Persistence is then modeled as a set of objects encapsulated by a server; a server

may recover the state of its objects after a crash. E differs from this approach in that its main goal is to provide tran-

sparent persistence for structuring large object bases and transparent I/O for manipulating them. In E, persistent
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objects exist independently of any active process.

Using inheritance to declare db types might have been a reasonable alternative for adding this feature into

C++. Instead of defining a type as a dbclass, one would define it as a class that inherits (directly or indirectly)

from a special predefined class, db. There are two problems with such an approach, however. The first is that the

fundamental C++ types (e.g., int) are not classes, so we cannot define their db analogs in terms of inheritance. The

second problem is that with the addition of multiple inheritance, it would be possible to define a class that inherits

from both db and non-db classes. It is not clear how one would define a consistent meaning for such a class, and we

might end up having to simply disallow such cases.

7.2. O++

Researchers at AT&T Bell Laboratories designed and implemented a language, O++, that seeks to blend both

high-level and systems-level programming features [Agra89]. Like E, O++ is also an extension of C++ including

persistence. However, O++ maintains class extents, and it provides support for integrity constraints and triggers.

Like most DBPLs, O++ also provides a form of iterator for expressing calculus-like queries over type extents; two

variations of this looping construct allow for querying either the extent of a single type or the extents of a type and

all of its subtypes. Despite its higher-level (more application-oriented) features, O++ still shares many of the basic

limitations and problems that E inherits from C++, e.g., the possibility of storing a persistent pointer to a volatile

object.

One interesting point of comparison between E and O++ is in their requirements for defining the type of a

possibly persistent object. In E, one associates the "db" attribute with a type; a pointer to that type can potentially

refer to a persistent object. In O++, one associates the type modifier "dual" with the declaration of a given pointer to

indicate that it might refer to a persistent object.13 (Thus, all db pointers in E are essentially "dual" pointers.) While

at first glance, O++ may seem to afford more flexibility, the two methods are essentially equivalent. Consider

defining a class which contains a pointer data member. If objects of this class may persist, then E requires that the

class be defined as a db type, while O++ requires that the pointer be given the "dual" type modifier. Now consider a

function which takes a pointer argument. Again, if we desire the function to be able to handle pointers to persistent

as well as nonpersistent objects, then E requires that the pointer refer to a db type, while O++ requires that the argu-

ment declaration have the "dual" type modifier. A potential advantage of E’s approach is that the "possibly per-

sistent" attribute need appear in only one place, i.e., with the type’s definition. However, a potential advantage of

the O++ design is that the syntax isolates the essence of the difference between persistent and nonpersistent types to
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

13O++ also has a type modifier "persistent" (not to be confused with E’s persistent storage class) which indicates that the
pointer definitely refers to a persistent object.
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the one place where it really makes a difference, i.e., pointers.

7.3. ObjectStore

In the past two years, several startup companies have introduced object-oriented database products based on a

C++ data model. Of particular relevance here is the ObjectStore system from Object Design [Lamb91]. Unlike

most of the commercial offerings, which offer persistence only through library interfaces, ObjectStore also extended

the C++ language with persistence in order to provide a tightly integrated, language-based interface to their database

system. ObjectStore was designed with essentially the same goals as O++, having been intended for use in com-

plex, data-intensive applications such as CAD, CAE, CASE, and geographic information systems (GIS).

ObjectStore has a number of features in common with E. ObjectStore shares E’s basic allocation-based

approach to persistence: C++ is extended with a persistent storage class, and persistent objects are obtained by

declaring variables of this storage class or allocating objects within a persistent collection. ObjectStore improves on

E’s approach by partitioning its persistent storage class into named databases, thereby alleviating the naming prob-

lem discussed earlier. Unlike E, persistence is orthogonal to type in ObjectStore; all pointers are the same size as

normal C++ pointers, and virtual memory mapping techniques and auxiliary data structures are used to manage I/O

and to handle databases larger than virtual memory [Lamb91]. (A driving goal in the design of ObjectStore was the

desire to get as close to C++ pointer dereferencing speeds as possible for applications whose working sets fit in main

memory.) Like E, ObjectStore provides a type-parameterized collection class — a C++ template — for use in

representing sets of objects. Since ObjectStore (like O++) is intended as an end-user DBPL, it provides several

variants of its collection type in the form of an object class library. Other more advanced features of ObjectStore

include support for inverse members (which model relationships between objects), associative queries and indexing,

versioned data, and cooperative transactions.

8. CURRENT STATUS

We currently have two E v.2.1 compilers working, both based on the AT&T cfront v.2.1 translator. These

two E compilers differ in how they manage I/O for persistent objects. One caches objects in the buffers of the

EXODUS Storage Manager and uses a hash table to locate cached objects [Schu90]; the other copies objects into

virtual memory and swizzles pointers, converting them from object id-based pointers into virtual memory addresses

while their target objects are resident [Whit92]. Other E implementations have experimented with compile-time

approaches to scheduling and optimizing calls to the storage layer [Rich89b, Rich90], and we have also explored an

implementation of persistence based on virtual memory mapping under the Mach operating system [Shek90]. Our

experience shows that each implementation can do well for certain classes of applications, and research is continu-

ing on how to make E programs fast and robust across a wide range of database sizes.
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In addition to E v.2.1, a version of E based on C++ v.3.0 is currently under development. This version will be

based on the Gnu g++ compiler, which will enable us to freely distribute E via anonymous ftp (which is how other

EXODUS software is already handled). The implementation of E v.3.0 is well underway, and we expect to be dis-

tributing this version of E by late Spring of 1992. As mentioned earlier, E v.3.0 will depart from earlier versions of

E in that generic types will be supported via the C++ template design; the collection generator class will be

appropriately redefined as a template. Other features of E (iterators and persistence) will remain as they are in E

v.2.1.

The EXODUS toolkit has been distributed to over 35 external sites to date. E has been (and is being) used to

construct a variety of data and object management prototypes, including a small demonstration relational DBMS at

the University of Wisconsin [SIG88], a DBMS with an integrated production-rule system at Wright State University

[Hans89], a nested relational DBMS at the Air Force Institute of Technology [Harv91], an object manager to sup-

port the ARCADIA program development toolset at the University of Colorado [Heim91], the EXTRA/EXCESS

and MOOSE object-oriented database systems at the University of Wisconsin [Care88, Ioan89], and a database sys-

tem to support the CAPITL programming environment project at the University of Wisconsin [Solo92]. The initial

experiences of two of our external user sites were reported recently in [Hans91].
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APPENDIX: A Parts Database

In [AtkM87], Atkinson and Buneman proposed a set of four tasks to evaluate the expressiveness of database

programming languages. We have coded and run their example tasks in E, and we present here excerpts from that

code. The example is a parts database in which a given part is either a base part or a composite part. The four tasks

are:

(1) Describe the database.

(2) Print the name, cost, and mass of all base parts that cost more than $100.

(3) Compute the total mass and total cost of a given composite part.

(4) Record a new manufacturing step in the database, that is, how a new composite part is manufactured from

subparts.

Our implementation follows in the spirit of those described in [AtkM87]. That is, a part may either be a

basePart or a compositePart. In our implementation, these classes are defined as subtypes of Part. A two-way

linked list of Use objects maintains the many-to-many usage relation between parts. Every part P keeps a UsedIn

list of other parts in which P is an immediate subpart. In addition, each composite part keeps a Uses list of its

immediate subparts.

The database is defined as PartsDb, a class containing three collections: base parts, composite parts, and

usage records. (Alternatively, we could have combined the first two into a single collection of parts.) This class

provides a search routine that looks for a part with a given name. Finally, Database is declared as a persistent

instance of this class.

To perform Task 2, the reporting of expensive parts, we simply iterate over the base parts in the database,

printing the desired information for each qualifying record. Task 3, the recursive calculation of a composite part’s

cost and mass, is somewhat more interesting due to its use of virtual functions (the bodies of which are not shown).

A base part simply returns its own cost and mass; a composite part recursively sums the cost and mass of its sub-

parts, and then adds its own incremental cost and mass.

Finally, Task 4 adds a new composite part definition to the database. This routine assumes that it is given the

name of the new composite part, its cost and mass increments, and a list of its subparts. The routine completes the

task by creating a new composite part instance and then adding this instance to the UsedIn list of each of its sub-

parts.
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const MAXSTRING = 16;
typedef dbchar String[MAXSTRING];

dbstruct Part; // forward decl.
dbstruct Use {

Part * Uses; // the subpart
Part * UsedIn; // the composite part that uses it
dbint Quantity; // how many of the subpart
Use * NextUses; // next entry on composite part’s uses chain
Use * NextUsedIn; // next entry on subpart’s used-in chain

};

dbstruct Part {
String Name; // name of part
Use * UsedIn; // subpart-of chain

Part( char*, Use * );
int Match( char* );
virtual void costAndMass(dbint&, dbint&);

};

dbstruct basePart : public Part {
dbint Cost; // cost of base part
dbint Mass; // weight of base part

basePart( char*, Use *, dbint, dbint );
virtual void costAndMass(dbint&, dbint&);

};

dbstruct compositePart : public Part {
Use * MadeFrom; // list of components
dbint AssemblyCost; // additional cost to assemble components
dbint MassIncrement; // additional mass to assemble components

compositePart( char*, Use *, dbint, dbint, Use *);
virtual void costAndMass(dbint&, dbint&);

};

dbstruct PartsDb {
dbclass bpCollType : collection[ basePart ];
dbclass cpCollType : collection[ compositePart ];
dbclass useCollType : collection[ Use ];

bpCollType bPartsFile; // all base parts
cpCollType cPartsFile; // all composite parts
useCollType Uses; // all uses/used-in links

Part * findPart( char* );
};

persistent PartsDb Database;
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure A1: Task 1: Describe the Database
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void Task2() {
iterate( basePart * p = Database.bPartsFile.scan() )

if( p→Cost >= 100 ){
printf("name = ");
strprint( p→Name );
printf(" cost = %d mass = %d", p→Cost, p→Mass);

}
}
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Figure A2: Task 2 - Print Out Expensive Parts
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void Task3(char * name) {
Part * p;
int d = 0;
int m = 0;

p = Database.findPart( name );
p→costAndMass( d, m );
printf("name = %s, cost = %d, mass = %d", name, d, m );

}
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Figure A3: Task 3 - Find Cost and Mass of a Part
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void Task4( char* name, dbint cost, dbint massInc, Use * usesList ) {
/* Assume usesList points to each subpart, but that subparts

have not yet been recorded as being used in this new part.
*/

compositePart * newPart;
newPart = new( Database.cPartsFile )

compositePart( name,NULL,cost,massInc,usesList );

for( Use * up = usesList; up != NULL; up = up→NextUses ) {
// this use is due to the new composite part
up→UsedIn = newPart;
// insert use-record at head of subpart’s used-in chain
up→NextUsedIn = up→Uses→UsedIn;
up→Uses→UsedIn = up;

}
}
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Figure A4: Task 4 - Add New Manufacturing Step
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